Thermal probing of E. coli RNA polymerase off-pathway mechanisms.
نویسندگان
چکیده
RNA polymerase (RNAP) is an essential enzyme for cellular gene expression. In an effort to further understand the enzyme's importance in the cell's response to temperature, we have probed the kinetic mechanism of Escherichia coli RNAP by studying the force-velocity behavior of individual RNAP complexes at temperatures between 7 and 45 degrees C using optical tweezers. Within this temperature range and at saturating nucleotide concentrations, the pause-free transcription velocity of RNAP was independent of force and increased monotonically with temperature with an elongation activation energy of 9.7+/-0.7 kcal/mol. Interestingly, the pause density at cold temperatures (7 to 21 degrees C) was five times higher than that measured above room temperature. A simple kinetic model revealed a value of 1.29+/-0.05 kcal/mol for the activation energy of pause entry, suggesting that pause entry is indeed a thermally accessible process. The dwell time distribution of all observable pauses was independent of temperature, directly confirming a prediction of the model recently proposed for Pol II in which pauses are diffusive backtracks along the DNA. Additionally, we find that the force at which the polymerase arrests (the arrest force) presents a maximum at 21 degrees C, an unexpected result as this is not the optimum temperature for bacterial growth. This observation suggests that arrest could play a regulatory role in vivo, possibly through interactions with specific elongation factors.
منابع مشابه
Inhibition of AckA and Pta Genes Using Two Specific Antisense RNAs Reduced Acetate Accumulation in Batch Fermentation of E. coli BL21 (DE3)
Expression of foreign proteins in E. coli is normally inhibited by exogenous production of acetate. To overcomethis problem, various strategies have been proposed and tested to reduce the extent of acetate accumulation.Although these strategies can improve the outcome, the implementation of their proposed techniquesis not practical. Because to achieve optimal results, it requi...
متن کاملEffects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli
Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...
متن کاملThe effects of covalent additions of a psoralen on transcription by E. coli RNA polymerase.
Synthetic DNA substrates containing a site-specifically engineered psoralen monoadduct or diadduct were used to characterize the response of the E. coli RNA polymerase elongation complex to these lesions. The psoralen derivative HMT (4'-hydroxymethyl-4,5', 8-trimethylpsoralen) was site specifically placed into two synthetic double-stranded DNA fragments each of which contained an E. coli RNA po...
متن کاملPicocalorimetry of transcription by RNA polymerase.
Thermal variations can exert dramatic effects on the rates of enzymes. The influence of temperature on RNA polymerase is of particular interest because its transcriptional activity governs general levels of gene expression, and may therefore exhibit pleiotropic effects in cells. Using a custom-modified optical trapping apparatus, we used a tightly focused infrared laser to heat single molecules...
متن کاملDifferential mechanisms of binding of anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA to E. coli RNA polymerase lead to diverse physiological consequences.
Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 382 3 شماره
صفحات -
تاریخ انتشار 2008